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Abstract
Medical image processing has gained significant momen-
tum in recent years. Latest advancements in machine learn-
ing and deep learning has enabled AI-powered generation
of medical image reports. Some limitations remain, how-
ever, for example, generated reports may be lengthy with-
out highlighting anomaly as desired, and some minor fea-
tures might be neglected which fails in fine-grained labeling.
To tackle the aforementioned challenges, this paper presents
Semantic and Visual Attention-Driven Multi-LSTM Network
(SVAML), a novel framework tailored to enhance medi-
cal image report generation. Specially, SVAML introduces
a Double-Weighted Multi-Head Attention mechanism with a
new weight function, to learn patterns of how to focus on de-
scribing important impressions from medical images. In ad-
dition, SVAML devises a Label Discriminator (LD), a mod-
ule to learn intricate features to support more sensitive multi-
label classification. Extensive experiments over two known
public datasets, the IU X-ray dataset and the PEIR Gross
dataset, have demonstrated the effectiveness of the presented
SVAML framework.

Introduction
Computer-aided medicine and health care, such as medi-
cal reports generation and online medical pre-diagnosis, has
been obtaining significant momentum in recent years. Med-
ical reports generation typically comprises two categories:
medical conversation-based report generation and medical
image report generation. Medical image report generation
refers to cross-disciplinary efforts at the intersection of com-
puter vision, bioinformatics, pattern recognition, machine
learning, and natural language processing (NLP). Latest ad-
vancements in deep learning has enabled AI-powered gener-
ation of medical image reports, leading to radiologist-level
report generation.

Traditionally, professional radiologists read and inter-
pret medical images, such as magnetic resonance imaging
(MRI), computed tomography (CT), ultrasound, or patho-
logical imaging, and depict a diagnostic report typically
comprising indications, findings and impressions. As med-
ical images become one major instrument supporting dis-
ease diagnosis, and individual medical images may exhibit
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unforeseen abnormal features, manual analysis and report
composition becomes not only time consuming but error
prone. Automatic medical image report generation thus be-
comes highly demanded (Anderson et al. 2018).

Medical image report generation is rooted in image cap-
tioning (Farhadi et al. 2010) aiming to generate textual de-
scriptions from images. Deep learning-powered works are
usually centered around a CNN-RNN model, where a CNN
learns visual patterns and generates a representation from an
image, followed by an RNN generating textual descriptions
from the intermediate representation (Anderson et al. 2018;
Zhou, Li, and Liang 2020; Maitre, Bouchard, and Gaboury
2020).

Vaswani et al. introduce the attention-based Transformer
architecture (Vaswani et al. 2017). Their attention mecha-
nism allows neural networks to automatically learn and se-
lectively focus on important information in the input, im-
proving the performance and generalization ability of NLP
models (Vaswani et al. 2017). Transformer is later applied to
the computer vision field, to enhance detection (Liang et al.
2020) and instance segmentation (Gavrilyuk et al. 2020). In
the realm of medical imaging processing, some researchers
employ the Transformer to improve graph neural networks
for processing pathology images to predict disease grade
(Zheng et al. 2022b). Meanwhile, some researchers redesign
a CNN-LSTM model based on Transformer, to extract do-
main data more effectively, thereby enabling human body
data analysis and health monitoring (Chen et al. 2020). Fur-
thermore, a pure transformer-based framework is designed
to enhance the descriptive labels generation from medical
images (Wang et al. 2022), integrating multi-label diagnostic
classification and word importance weighting. Furthermore,
Vision Transformer (ViT) (Dosovitskiy et al. 2021) splits an
image into fixed-size patches, and feeds the linear sequence
of the embeddings of each patch to a Transformer encoder.
ConViT (d’Ascoli et al. 2021) further combines CNN and
ViT by allowing each self-attention layer to decide whether
to behave as a convolutional layer or not.

Despite of the substantial advancements achieved in med-
ical imaging report generation, significant challenges remain
and result in the omission of crucial details or even ad-
versely affect the integrity of the generated reports (Vaswani
et al. 2017). Among them, two limitations deserve investi-
gation. Firstly, generated reports using existing models may



be lengthy without highlighting anomaly as desired. Al-
though the attention mechanism may grant a model capac-
ity to concentrate on specific segments of an input image,
it does not inherently discern the critical aspects, i.e., typ-
ically anomaly, to which it should ascribe greater signifi-
cance (Gavrilyuk et al. 2020). Secondly, some minor fea-
tures might be neglected during model learning, which leads
to failure in fine-grained labeling. The inherent complex-
ity of multi-label classification, aggravated by a vast array
of potential labels, often impedes the attainment of precise
classification outcomes (Liang et al. 2020).

In order to tackle the aforementioned two challenges, this
paper introduces a novel framework called Semantic and Vi-
sual Attention-Driven Multi-LSTM Network (SVAML), tai-
lored to enhance medical image report generation. Synergis-
tically leveraging ConViT (d’Ascoli et al. 2021) and Muti-
LSTM (Hochreiter and Schmidhuber 1997; Zheng et al.
2022a), SVAML introduces two new modules. The first
module incorporates a multi-head attention structure with
double weights. As opposed to the conventional attention
module, this module improves the correlation between tar-
get features of medical images and the descriptions of corre-
sponding labels. The integration of double weights for head
aggregation enlightens the model about the pivotal variances
amongst different attention heads. The second module is
’Label Discriminator’ devised to harness tag information ef-
ficaciously and attenuate the model’s over-sensitivity to tags
during report generation. This module will mitigate the limi-
tations associated with imprecise keyword identification and
classification to achieve more effective information extrac-
tion.

The contributions of this paper can be summarized in
three-fold:

• This paper augments the multi-head attention mechanism
with a double weighting instrument, which learns pat-
terns of how to focus on describing important impres-
sions from medical images through a new weight func-
tion.

• This paper introduces a Label Discriminator (LD), which
helps classify medical images with more fine-grained la-
bels.

• Extensive experiments over two known public datasets,
the IU X-ray dataset and the PEIR Gross dataset, have
demonstrated the effectiveness of the SVAML frame-
work.

The remainder of this paper is organized as follows. The
Related Work section rigorously compares this work in the
context of the literature. The Methodology section will intro-
duce in details the proposed SVAML framework. The Exper-
iments section discusses the empirical studies over twp real-
world datasets. The Conclusions section summarizes the pa-
per.

Related Work
Medical image report generation usually consists of two
stages. The one stage is to generate image subtitles, and
the second one is to combine subtitles and generate reports

in sentences (Yang et al. 2021). In the first stage, medi-
cal images are processed to generate feature words. Typ-
ically, CNN can be applied to detect target images and
generate category words. However, CNN requires a huge
amount of training data and its training efficiency is ques-
tionable. Meanwhile, because not many category words
may be generated, it affects on subsequent sentence genera-
tion. In recent years, the Transformer architecture, originally
from the NLP field, has been applied to image processing
and obtained satisfactory results (Dosovitskiy et al. 2021),
even surpassing convolution-based structures in some tasks.
Based on the Transformer architecture, CNNs are not an in-
dispensable component for image classification tasks any
longer. For example, the Vision Transformer (ViT) (Doso-
vitskiy et al. 2021) proposes a pure Transformer architec-
ture applied directly to sequences of embeddings of im-
age patches split from the original images. When ViT com-
bines with CNNs, a resulting convolutional-like ViT ar-
chitecture called ConViT (d’Ascoli et al. 2021) exhibits
sample-efficient learning and performance improvements.
Since medical images in a particular domain, for example
for glaucoma CT scans, may be characterized by a limited
availability of samples. In our research, we decided to adopt
the ConViT to learn image features.

Tang et al. (Tang et al. 2022) develops a H-Decoder to
extract semantic features from medical images, centered by
a pair of LSTM networks. The initial LSTM is dedicated
to encoding tag features, while the subsequent LSTM is de-
signed to facilitate sentence generation. The second LSTM
network actually execute twice to encoding, to produce a
pair of coherent paragraphs that collectively constitute a
comprehensive medical report. In this work, we construct
our decoder in the SVAML by adopting the principle of the
H-Decoder.

In contrast to existing works, our proposed SVAML
framework aims to automate medical image report gener-
ation. While we leveraged ConViT as encoder for image
feature extraction and H-Decoder as decoder for sentence
creation, SVAML introduces two new modules to enhance
medical image report generation: a Double-Weighted Multi-
Head Attention mechanism with a new weight function to
learn patterns of how to focus on describing important im-
pressions throuth the new weight function from medical im-
ages; and a ’Label Discriminator’ to learn intricate features
to support more sensitive multi-label classification.

SVAML Methodology
Fig. 1 illustrates the overview of our proposed framework,
Semantic and Visual Attention-Driven Multi-LSTM Net-
work (SVAML), tailored for automatic medical image re-
port generation. As shown in Fig. 1, SVAML employs
an encoder-decoder framework, comprising four modules:
(1) Image Feature Extraction and Processing, (2) Double-
Weighted Multi-Head Attention Encoder, (3) H-Decoder,
and (4) Lable Discriminator. The following sections will ex-
plain the detailed designs of each module sequentially.

(1) Image Feature Extraction and Processing We utilize
the ConViT model as part of the encoder for SVAML. Due



Figure 1: Overall architecture of SVAML. It consists of four modules: (1) Image feature extraction based on ConViT;
(2) Double-Weighted Multi-Head Attention; (3) H-Deconder; (4) Label Discriminator. The image will first be sent to
CV Transformer for processing, generating FCV T , and then input to the dual-weighted multi-head attention mechanism
we designed. At the same time, Label on the H-Deconder side will also be input to LSTM at the same time. The two are
processed in these two parts respectively, during which they will share a part of the weight. After that, LabelDiscriminator
will process both, calculate the loss function, and get the final report.

to the fact that medical images usually have limited samples,
we pre-trained the module on the ImageNet dataset, omit-
ting its final classification layer, for the extraction of 512-
dimensional visual features (d’Ascoli et al. 2021). Based on
the pre-trained model, we inherit from the SVEH architec-
ture (Tang et al. 2022), incorporate an Image Feature Encod-
ing (IFE) module to concurrently assimilate and encode both
macroscopic and microscopic image attributes. As shown in
Fig. 1, we made some modulation for the module, chain-
ing the IFE behind ConViT to form a new CV Transformer.
The image I is first processed by ConViT to obtain a feature
map, which will serve as the input for IFE to obtain the final
visual features FCV T .

(2) Double-Weighted Multi-Head Attention We design
a tailored attention module. The base attention model con-
tains one head. It then splits one Q, K and V into N parts
(N>1), each of which focusing on different aspects to en-
rich model features, and results in multi-head attention. N is
the number of heads (Vaswani et al. 2017).

If applied conventional multi-attention mechanisms,
their aggregation of N attention heads is achieved
through straightforward concatenation or addition opera-
tions, thereby assigning equal significance to each head to-
ward the generation of final reports. However, some areas
that require ”special attention,” such as keywords, target ob-
jects, etc., require more attention, that is, they require greater
weight.

Drawing upon this perceptual insight, our research intro-
duces the Multi-Head Attention that is designed to more ac-
curately emulate the selective attentional processes observed

in human cognition by differentially weighting the signifi-
cance of various attention heads, thereby aligning the mech-
anism more closely with the nuanced manner in which hu-
mans process visual stimuli. headia is the output, being pro-
cessed by different heads i, and it will be mapped linearly by
a group of weights wa. At the beginning of each training it-
eration, wa(i) (i means the iteration of training) is calculated
by wa(i−1), multiplying softmax function. At the first epoch
of model training, each head share equal importance. Due to
it, wa(0) is a straight vector (all values are 1.).And we use
BN , a normalization factor, to multipy wa(i), which is used
to keep its consistency throughout the whole training pro-
cess, shown as wa(i) = softmax(wa(i−1)). Based on it, the
output of attention module with single weight can be shown
as headwa(i) = wa(i) ∗ heada(i).

For multi-head, it becomes apparent that certain heads,
which are more pertinent to report generation, acquire sig-
nificantly higher weights following the training phase. This
results in a pronounced emphasis on these heads in the over-
all process. Conversely, other heads assume more nuanced
roles, contributing in a less pronounced, yet still integral,
manner to the comprehensive functionality of the model. To
enhance this advantage, we introduce multi-headed atten-
tion. For each step, the head whose Wa is the highest will be
chosen as the base for the next step. We use Cosine Weight
cos(i)j to represent the cosine similarity between head i and
base at the jth iteration. For each batch, the computation of
the second weight wj

cos(i) involves aggregating the cosine
similarities corresponding to the same attention head. This
method ensures a balanced and reasonable approach to de-



Figure 2: The value of cosine similarity is related to the distribution of the values of different heads. Due to the large amount
of data, we only used 5000 Cosine Similarities of all for each head to describe its distribution characteristics. The distribution
pattern of all data itself is almost the same as this.

termining the secondary weighting factor within the multi-
head attention framework.

cos(i)j = cos(headja(i−1), head
base
a(i−1)) (1a)

wj
cos(i) =

∑
k∈i cos(i)

j
k

N
(1b)

wj
dwa(i) = wj

a(i) ∗ (1− wj
cos(i)) (1c)

headjdwa(i) = wj
dwa(i) ∗ head

j
a(i) (1d)

where cos(i)j ∈ [−1, 1], cos(i)jk is the cosine similarity be-
tween head j and base of data k, N is the number of heads
, headdwa is the output of attention module after double
weighted, which is the final attention output in our model.
Apparently, the weight of base is free from cosine weight.
The final attention headdwa is calculated by all four weights.

As shown in Fig. 2, we calculate the average cosine simi-
larity during multiple training phases. It can be seen that the
cosine similarity between the same head is 1, which is the
diagonal value of the matrix. However, due to the similar-
ity of most of the labels in the dataset itself and the image
itself, the similarities calculated by different heads are very
close to 1, with only a few negative values. This is very close
to the label sentence (Ground-Truth) itself, that is, the sen-
tence structure and wording, and is very consistent with the
different characteristics of only the keywords description of
disease. Based on the value distribution of cosine similarity,
we design a weight function of 1 − wj

cos(i) to balance the
weight features. Be specific, we hope our model to be able
to remember negative samples, i.e., diseased samples, more
accurately. The more similar the normal sample specimens

are, the cosine similarity will be close to 1, 1 − wj
cos(i) will

be close to 0, and the weight itself will not be too much am-
plified. The closer the negative sample is to -1, the value is
amplified, that is, the closer it is to 2. In this way, the weight
of the negative sample is strengthened. In other words, the
designed model will focus more on learning from those neg-
ative samples.

(3) H-Decoder As shown in Fig. 1, H-Decoder consists of
two LSTMs and the second LSTM (LSTM-2) decodes twice
(Tang et al. 2022). Unlike the Look Back (LB) method (Qin
et al. 2019), in this architecture, shown in Figure 2, LSTM-
1 is exclusively employed for the encoding of tag features,
serving a pivotal role in the initial processing stage. Concur-
rently, LSTM-2 is utilized for the generation of sentences,
indicating a functional distinction between two-LSTM net-
works. This bifurcation in roles allows for a more special-
ized and efficient handling of distinct tasks within the over-
all computational process. The dimensions for both word
embedding and the hidden states of all LSTM networks are
uniformly set at 512.

(4) Label Discriminator Medical imaging datasets fre-
quently incorporate explicit tags that denote the type of dis-
ease and other critical information. Contemporary computa-
tional models utilize such tags within a multi-label classifi-
cation framework to facilitate tag prediction, subsequently
leveraging these predictions in the generation of diagnostic
reports. This approach hinges on the accuracy of tag predic-
tion. However, the efficacy of image classification models
is often compromised by the limited size of most medical
datasets, which simultaneously contain a vast array of tags.



Consequently, the reliability of report generation, being in-
trinsically linked to the precision of tag prediction, is under-
mined. Inaccurate tag predictions not only render the reports
ineffective but can also detrimentally impact the overall per-
formance of the model.

Tags can be seen as key words of reports. They are just
like symbols that can be used for identification. Inspired
by this relationship, we propose a novel method to utilize
symbol effectively. Because of it, training process will be
more efficientive. The architecture of this model is distin-
guished by its inclusion of a multi-label classification mod-
ule. Uniquely, in a deviation from established methodolo-
gies, this module processes generated textual reports as its
primary input, rather than direct image data. At its core, the
module integrates a LSTM network, explicitly designed for
the prediction of tags. Complementing this is a dedicated
classification layer, which together with the LSTM, whose
dimensions for both word embedding and the hidden states
are 512, synergizes to effectively categorize and analyze the
content of the reports. This innovative approach allows for
a more nuanced interpretation of the textual data, thereby
augmenting the precision and reliability of the classification
outcomes in the context of the model’s broader application.
Embedded reports Re are sent into the prediction LSTM,
and it outputs predict symbol. Then, we flatten s with a lin-
ear mapping layer and gain probability of each symbol with
softmax. This symbol participates in the training process by
adding its loss function, lossT , in backward propagation. All
relationships can be shown as below:

s
′
= LSTM(Re) (2a)

s = softmax(Wt ∗ s
′
+ bt) (2b)

losst1 =
∑

i
tagi ∗ log(

esi

1 + esi
) (2c)

losst2 = (1− tagi) ∗ log(
1

1 + esi
) (2d)

lossT = − 1

C
losst1 + losst2 (2e)

loss = loss1 + η ∗ loss2 + λ ∗ lossT (2f)

where Wt and bt are trainable parameters used to flatten s
′
;

tag represents the true ’symbol (tags)’; i ∈ {0, ..., n − 1},
tagi ∈ {0, 1}; n is the number of tags types. loss is the
final loss of model, loss1(loss2) is the cross-entropy loss
between reports generated by first (second) LSTM-2 in H-
Decoder and true captions. The second LSTM-2 generation
is confined by an adjustable parameter η ∈ (0, 1]. Due to the
reason that lossT is merely one-tenth of loss1 and loss2,
lossT needs to be amplified to balance. Given that losst
does not reflect to reports quality like loss1 and loss2, so
we set its coefficient λ at 5. And lossT is the MultiLabel-
SoftMarginLoss1.

1MultiLabel- SoftMarginLoss: https://pytorch.org/docs

Experiments
Datasets and Evaluation Metrics
Datasets Two widely-used datasets, IU X-ray and PEIR
Gross are used in this paper. IU X-ray is a chest X-ray col-
lection selected from the Indiana Network for Patient Care
by researchers from Indiana University2. PEIR Gross is the
Gross sub-collextion of the Pathology Education Informa-
tional Resource (PEIR) digital library3. For IU X-ray, we
adopt 6730 image-caption pairs, which has been processed.
For PEIR Gross, We have used 7442 image-caption pairs.
For both two datasets preparation, please refer to the survey
(V. Kougia 2019) and the journal (Demner-Fushman et al.
2016).

Evaluation Metrics The optimization of our model is car-
ried out using the ADAM algorithm (Kingma and Ba 2015),
with a learning rate set at 0.0004. Following the insights
(Tang et al. 2022), we adjust the value of η to 0.5 to op-
timize performance. For the evaluation process, we imple-
ment a 10-fold cross-validation technique on both datasets.
In this schema, each fold comprises a set of 500 distinct,
non-overlapping images, randomly selected to ensure a rep-
resentative sample. The remaining images in the dataset
are consistently utilized as the training set. This methodol-
ogy ensures a robust validation of the model’s performance
across a diverse range of data samples. During the evalua-
tion phase, a beam search strategy is employed. And three
widely-used metrics are used to evaluate our work : BLEU
(Papineni et al. 2002), ROUGEL (Lin and Och 2004), and
CIDEr (Vedantam, Zitnick, and Parikh 2015). For the com-
putation of metrics, we utilize a widely-adopted image cap-
tioning tool4.

Experimental Results
Comparison to Advanced Models As shown in Table
1, we compare many well-performed previous works and
our model obtains state-of-the-art results on both validation
datasets. Regardless of whether the sentences are long or
short, our model achieves the highest accuracy on IU X-
ray. For PEIR Gross, we got the highest ones on BLEU-1,
BLEU-2, BLEU-3 and ROUGEL, and the sencond highest
ones on BLEU-5 and CIDEr.

We also show some comparison reports of different mod-
els generated corresponding to images, as shown in Figure
3. By comparison with other models, our model generates
more concise reports. Compared with the positive samples,
the difference between the reports and Ground-Truth is not
very big. Because of 1 − wj

cos(i), the model itself will not
have a high weight when learning normal samples. Com-
pared with pathological samples, because their weights are
amplified, the model ”pays more attention” to these key-
words and differences. Therefore, the final generated report
is more accurate in capturing pathological nouns and will
not be much different from the original Ground-Truth. The

2https://openi.nlm.nih.gov
3https://peir.path.uab.edu/library/
4https://github.com/Maluuba/nlg-eval



Model Dataset BLEU-1 BLEU-2 BLEU-3 BLEU-4 ROUGEL CIDEr
cnn-rnn (Vinyals et al. 2015) 38.1 29.0 22.7 16.0 39.6 31.2

co-att (Jing, Xie, and Xing 2018) 46.2 33.1 24.2 17.8 40.5 40.8
nearest-neighbor (V. Kougia 2019) 28.1 15.2 9.1 5.7 20.9 -

KERP (Li et al. 2019) 48.2 32.5 22.6 16.2 33.9 28.0
MvH (Yuan et al. 2019) 43.6 31.2 22.9 17.0 37.2 32.8
A3FH (Xie et al. 2019) 44.3 33.7 23.6 18.1 34.7 -

JE-TriNet (Yang et al. 2021) IU X-ray 47.8 34.4 24.8 18.0 39.8 43.9
TransGen (Jia et al. 2021) 46.1 28.5 19.6 14.5 36.7 -
PPKED (Liu et al. 2021) 48.3 31.5 22.4 16.8 37.6 35.1
SVEH (Tang et al. 2022) 50.8 35.6 25.9 19.1 40.8 41.5

AENSI (Huang et al. 2023) 54.2 36.4 26.7 19.8 43.3 46.4
SVAML (Ours) 55.7 37.7 28.1 21.3 43.5 47.5

co-att (Jing, Xie, and Xing 2018) 30.0 21.8 16.5 11.3 27.9 32.9
nearest-neighbor (V. Kougia 2019) 34.6 26.2 20.6 15.6 34.7 -

SVEH (Tang et al. 2022) PEIR Gross 46.6 32.3 23.3 16.9 37.4 26.9
AENSI (Huang et al. 2023) 44.2 31.5 22.6 17.4 43.5 28.2

SVAML (Ours) 46.7 33.3 24.1 17.2 44.6 31.2

Table 1: Comparison of Proposed Methods with state-of-the-art Methods on the IU X-ray and PEIR Gross. Red means that
except for our method, the result is the highest. - means that we did not get test results through experiments, and consulting the
original article did not provide results. (×100%)

Model Dataset BLEU-1 BLEU-2 BLEU-3 BLEU-4 ROUGEL CIDEr
Baseline 51.0±1.4 31.8±1.7 24.9±2.3 16.8±2.6 38.9±2.1 42.4±3.4

+Single-Weight 51.1±1.7 31.9±1.3 25.3±2.0 16.9±3.4 39.1±2.5 43.3±2.6
+Quadruple-Weight IU X-ray 52.4±2.1 32.6±1.9 25.9±1.1 18.7±2.1 39.5±1.7 43.2±3.1

+Lable Discriminator 52.5±2.4 33.4±2.3 26.1±1.4 19.4±1.1 40.0±2.9 44.1±2.4
+SVAML (All) 53.2±2.5 34.0±3.7 26.5±1.6 19.8±1.5 40.1±3.4 44.8±2.7

Baseline 42.2±1.7 28.1±1.7 19.4±2.2 14.2±1.2 41.6±2.5 24.2±1.7
+Single-Weight 42.0±2.9 28.5±2.1 19.2±2.7 14.2±1.3 41.1±2.5 23.3±4.7

+Quadruple-Weight PEIR Gross 42.7±2.1 29.1±2.7 20.1±2.4 13.8±2.7 41.8±3.1 24.9±3.1
+Lable Discriminator 42.8±2.7 29.2±3.1 20.7±3.0 14.9±1.9 41.9±3.5 21.9±7.2

+SVAML (All) 43.2±3.5 29.9±3.4 20.9±3.2 15.1±2.1 42.4±4.2 25.3±5.9

Table 2: Ablation Study of Key Structures on IU X-ray Dataset and PEIR Gross: The baseline model comprises a Vision
Transformer (ViT) encoder, a Hierarchical Decoder (H-Decoder), and a multi-head attention module. (×100%)

reports generated by JE-TriNet ((Yang et al. 2021)), whether
for normal conditions or pathological conditions, have rela-
tively long and complicated sentences. This will have some
impact on the efficiency of people reading reports and ex-
tracting useful pathological information.

Meanwhile, as shown in Fig. 4, Loss, Loss1, Loss2 and
LossT all tend to stabilize after the fourth epoch. During
the training process, the model itself focuses on pathological
samples and does not pay much ”attention” to normal sam-
ples. Because of this, training is faster and declines faster.

Ablation Experiment Also, we have tested baselines of
our model. They are a ViT encoder, H-Decoder and tradi-
tional multi-head attention module, based on the IU X-ray
dataset and PEIR Gross, as shown in Table 2. The com-
parative analysis reveals a consistent trend of enhancement
with the incorporation of our proposed modules. Most no-
tably, our fully developed model, SVAML, achieves the
most superior results. Additionally, the comparison between
DW-MHA and Lable Discriminator indicates a close align-

ment in their effectiveness. Furthermore, the incremental im-
provements observed in the top three rows substantiate the
impact of the dual heads in DW-MHA. This is particularly
evident as the addition of three weights leads to a more pro-
nounced improvement than the inclusion of a single weight
alone, highlighting the superiority of dual-head performance
over a single-head approach.

Conclusion
In this paper, we present two innovative solutions to ad-
dress the predominant challenges in current medical report
generation models. Firstly, we introduce a double-weighted
multi-head attention mechanism with a new weight func-
tion, which enhances the model’s ability to concentrate on
the most significant segments of images during the genera-
tion process. Secondly, we propose the Lable Discrimina-
tor (LD), which optimally utilizes tag information within
the constraints of limited training samples. Our extensive
and comprehensive experiments across both radiology and
pathology datasets validate the effectiveness of our meth-
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Figure 3: Examples of medical reports generated by SVAML and other models on IU X-ray

ods. Furthermore, when benchmarked against current state-
of-the-art models, our approach demonstrates equivalent or
superior performance.

Future Work
We also found some problems and interesting places when
we were doing experiments.
• We found that when our model was tested on the PEIR

Gross data set, the evaluation matrix CIDEr fluctuated
particularly large. Its experimental results are not as good
as the previous basic model. Because of this, in future
research, we will analyze the applicability of our model
itself and the characteristics of the data set, and improve
our algorithm based on the paper (Tao Tu 2023).

• The ConViT model (d’Ascoli et al. 2021) still has some
shortcomings when extracting local features: it cannot
capture small edges, requires a high-precision data set,
and requires powerful GPU resources during training.
Based on the above defects, we will optimize this part,
or redesign a Transformer algorithm, or use the latest Ef-
ficientViT for experiments (Liu et al. 2023; Cai, Gan, and
Han 2022).

• We will redesign a weight function in future research.
Because a large number of images and their label de-
scriptions are very similar, the pathological causes are
also very similar. Because of this, we will focus on
strengthening our focus on ’differences’. Remembering
only some particularly distinctive characteristics (patho-
logical), not necessarily some general (normal) charac-
teristics will make the model more efficient. We will fur-
ther improve this point and make it adaptive to changes
in weights, so that sample features can be learned more
accurately.

• We will combine some emerging fields, such as AIoT
(Baker and Xiang 2023; Chen et al. 2022), edge com-
puting (Lin et al. 2023; Liu et al. 2019), etc. Finally, we

will develop the model into an industrial-grade AI that
can be applied on the ground.
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